d357: NOIP2002 2.选数
Tags :
Accepted rate : 117人/124人 ( 94% ) [非即時]
評分方式:
Tolerant

最近更新 : 2014-11-01 00:37

Content

已知 n 个整数 x1,x2,…,xn,以及一个整数 k(k<n)。从 n 个整数中任选 k 个整数相加,可分别得到一系列的和。例如当 n=4,k=3,4 个整数分别为 3,7,12,19 时,可得全部的组合与它们的和为:
    3+7+12=22  3+7+19=29  7+12+19=38  3+12+19=34。
  现在,要求你计算出和为素数共有多少种。
  例如上例,只有一种的和为素数:3+7+19=29)。

Input
键盘输入,格式为:
  n , k 1<=n<=20kn
  x1,x2,…,xn 1<=xi<=5000000

Output

屏幕输出,格式为:
  一个整数(满足条件的种数)。

Sample Input
4 3
3 7 12 19
Sample Output
1
測資資訊:
記憶體限制: 512 MB
公開 測資點#0 (10%): 1.0s , <1K
公開 測資點#1 (10%): 1.0s , <1K
公開 測資點#2 (10%): 1.0s , <1K
公開 測資點#3 (10%): 1.0s , <1K
公開 測資點#4 (10%): 1.0s , <1K
公開 測資點#5 (25%): 1.0s , <1K
公開 測資點#6 (25%): 1.0s , <1K
Hint :
Tags:
出處:
NOIP2002普及组第二题 [管理者:
liouzhou_101 (王启圣)
]


ID User Problem Subject Hit Post Date
沒有發現任何「解題報告」