c087. 00412 - Pi
標籤 :
通過比率 : 951人/1013人 ( 94% ) [非即時]
評分方式:
Tolerant

最近更新 : 2013-12-01 09:21

內容

英國一個大學教授Robert A.J. Matthews根據夜空中劃過天際的星星的位置,讓人驚訝的推論出關於Pi(原週率)的準確度。當然,這牽扯到數論的理論及應用。在此,我們沒有夜空,但是我們要用相同的理論來估計Pi的值:

從一個數量龐大的數的集合中隨機的取2個數,這2個數互質(就是沒有比1大的公因數)的機率是:

例如:假設一個數的集合為{2,3,4,5,6},可以形成10對數。其中(2,3), (2,5), (3,4), (3,5), (4,5), (5,6)這6對數互質。所以我們可以推出:

在這個問題中,給你一些數,要請你估計出Pi的值。

輸入說明

輸入包含多組測試資料。每組測試資料的第一列有一個正整數N(1 < N < 50),代表集合中元素的個數。接下來的N列每列各有一個正整數,代表此集合中的數。這些數都大於0,並且小於32768。

N=0代表輸入結束。請參考Sample Input。

輸出說明

對每一組測試資料,輸出你所估計Pi的值,四捨五入到小數點後6位。如果沒有任何一對數互質,請輸出No estimate for this data set.

請參考Sample Output。

範例輸入 #1
5
2
3
4
5
6
2
13
39
0
範例輸出 #1
3.162278
No estimate for this data set.
測資資訊:
記憶體限制: 512 MB
公開 測資點#0 (100%): 1.0s , <1K
提示 :
* 中文翻譯:Lucky 貓
標籤:
出處:
UVa412

本題狀況 本題討論 排行

編號 身分 題目 主題 人氣 發表日期
23813 fire5386 (becaidorz) c087
數學題目
1109 2020-12-20 22:08
19939 40875036H (Norbie) c087
1498 2019-11-12 01:29