b151: NOIP2004 2.合并果子
Tags :
Accepted rate : 514人/570人 ( 90% ) [非即時]
評分方式:
Tolerant

最近更新 : 2014-11-01 02:49

Content

在一个果园里,多多已经将所有的果子打了下来,而且按果子的不同种类分成了不同的堆。多多决定把所有的果子合成一堆。

每一次合并,多多可以把两堆果子合并到一起,消耗的体力等于两堆果子的重量之和。可以看出,所有的果子经过n-1次合并之后,就只剩下一堆了。多多在合并果子时总共消耗的体力等于每次合并所耗体力之和。

因为还要花大力气把这些果子搬回家,所以多多在合并果子时要尽可能地节省体力。假定每个果子重量都为1,并且已知果子的种类数和每种果子的数目,你的任务是设计出合并的次序方案,使多多耗费的体力最少,并输出这个最小的体力耗费值。

例如有3种果子,数目依次为129。可以先将 12堆合并,新堆数目为3,耗费体力为3。接着,将新堆与原先的第三堆合并,又得到新的堆,数目为12,耗费体力为 12。所以多多总共耗费体力=3+12=15。可以证明15为最小的体力耗费值。

Input
每組輸入包括两行,第一行是一个整数n1 <= n <= 30000),表示果子的种类数。第二行包含n个整数,用空格分隔,第i个整数ai1 <= ai <= 20000)是第i种果子的数目。
Output
每組输出包括一行,这一行只包含一个整数,也就是最小的体力耗费值。输入数据保证这个值小于231
Sample Input
3
1 2 9
Sample Output
15
測資資訊:
記憶體限制: 512 MB
公開 測資點#0 (10%): 1.0s , <1K
公開 測資點#1 (10%): 1.0s , <1M
公開 測資點#2 (10%): 1.0s , <1M
公開 測資點#3 (10%): 1.0s , <1M
公開 測資點#4 (10%): 1.0s , <1M
公開 測資點#5 (10%): 1.0s , <1M
公開 測資點#6 (10%): 1.0s , <1M
公開 測資點#7 (10%): 1.0s , <1M
公開 測資點#8 (10%): 1.0s , <1M
公開 測資點#9 (10%): 1.0s , <1M
Hint :
对于30%的数据,保证有n <= 100;
对于50%的数据,保证有n <= 5000;
对于全部的数据,保证有n <= 30000。
Tags:
出處:
NOIP2004提高組


ID User Problem Subject Hit Post Date
17480
BensonQB (班森)
b151
類題
101 2019-04-14 12:10